Size partitioning of airborne particles to compare their proinflammatory effect in airway epithelial cells.

K. Ramgolam1, O. Favez2, L. Martinon3, H. Cachier2, A. Person4, A. Gaudichet5, F. Marano1, and A. Baeza-Squiban1

1 : Laboratoire de Cytophysiologie et Toxicologie Cellulaire (LCTC), Université Paris 7, 75005 Paris, France
2 : Laboratoires des Sciences du Climat et de l’Environnement (LSCE), 91191 Gif sur Yvette, France
3 : Laboratoire d’Etude des Particules Inhalées (LEPI), 11 rue Georges Eastman, 75001 Paris, France
4 : Laboratoire d’Hygiène de la Ville de Paris (LHVP) 11 rue Georges Eastman, 75001 Paris, France
5 : Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Université Paris 12, Créteil, France

Keywords: urban aerosols, fine and ultrafine fractions, lung-particle interactions, health effects of aerosols.

Paris background aerosol is almost exclusively composed of fine (PM 2.5; PM 1) and ultrafine (PM 0.1) particles, originating mainly from combustion processes including traffic exhausts. Epidemiological and experimental investigations underlined the role of the aerosol size, in particular the ultrafine one.

The aim of the present study was to investigate which size-fraction of the urban particulate matter is the most relevant regarding to the biological effect considering the proinflammatory response of airway epithelial cells \textit{in vitro}. This response is characterized by the release of mediators that would explain the inflammation observed in exposed subjects.

Human bronchial epithelial cells (16HBE) and primary cultures of nasal epithelial cells (HNE) that are the main target cells of airborne particles were exposed to the different size-fractions. The release of GM-CSF, a cytokine involved in allergic process was used as a proinflammatory biomarker of PM exposure and the cytochrome P450 1A1 (CYP1A1) that metabolizes xenobiotics, which activity was used as a biomarker of polyaromatic hydrocarbon (PAH) bioavailability.

Downtown Paris, four co-located 13-stage Dekati cascade impactors running in parallel were used to selectively collect particles from 30nm to 10µm on polycarbonate filters and were allocated to biological and physico-chemical (black carbon, particulate organic matter and water soluble organic compounds, major ions, PAH) investigations. 11 samplings were conducted in order to investigate whether the seasonal variability (summer and winter) and diurnal evolution related to photochemistry of the urban aerosol composition modulate the biological effects of some or all size-fractions.

\textit{In vitro} biological assays were conducted with particles from pooled stages (1 to 3 representing ultrafine fraction [0.1-0.03µm], 4 to 7 the [1-0.1µm], 8 to 9 the [2.5-1µm] fine fraction and 10 to 13 the [10-2.5µm] coarse fraction). Particles were recovered from collection filters by brief sonications directly in the same volume of cell culture medium for each size-fractions. Two experimental strategies were used: cells were exposed for 24 hours either at isovolume of particles suspension in order to respect the proportion of the different size-fraction in the sampled-air volume or at isomass.

When cells are exposed to an isovolume of particles suspension, the highest GM-CSF secretion was induced by PM1-0.1 that is the most important fraction in Paris background aerosol (up to 71% of the total PM10 mass). With a cell exposure at an isomass of particles, GM-CSF secretion was significantly induced by fine and ultra-fine particles with a dose-dependent increase from 1µg/cm² (5µg/mL) to 10µg/cm², without inducing any cytotoxicity. Whatever the season or diurnal sampling, the finer the aerosol fraction, the higher the GM-CSF secretion was, whereas coarse particles displayed no or fewer effect. Moreover, endotoxins were not involved in the ultrafine particle-induced GM-CSF secretion whereas they partially contributed to the fine particle ones as assessed by the use of endotoxin neutralizing recombinant protein. Considering PAH bioavailability, PM1-0.1 from winter samples induced the higher CYP1A1 activity whereas the CYP1A1 activity increases as the size decreases with summer samples.

Chemical analyses enlightened the major presence of carbonaceous species in Paris aerosols especially in the ultra-fine and fine fractions where PAH are also predominant (90% in these fractions).

To conclude, we observed that the proinflammatory response of bronchial epithelial cells \textit{in vitro} was closely related to particle size with ultrafine particles exhibiting the highest effect.

This work was supported by ADEME, the french environmental agency, under the PRIMEQUAL grant no 0462C0056.