Diffusion of charged particles in a DMA with inclined electric field

J. Salm and U. Hõrrak

Institute of Environmental Physics, University of Tartu, 18 Ülikooli St., 50090, Tartu, Estonia

Keywords: DMA, size analysis, diffusion, measurement errors.

In general lines, a differential mobility analyser (DMA) has air inlet(s), air outlet(s), electrodes, and collector(s) of electric current. Diffusion distortions in a simple DMA have been studied in (Salm, 2000). We will demonstrate that the method developed in the above paper is applicable also for a more complicated DMA. In particular, we consider the design of DMA with inclined electric field, which has certain advantages with respect to resolution (Loscertales, 1998; Tammet, 1999). The principle of inclined velocities was developed in an analyser by Tammet (2003).

In this abstract we systematically refer to the paper (Salm, 2000) and the corresponding equation numbers. Figure 1 of this paper is retained, only the traverse electric field strength \(E \) is replaced by two components \(E_x \) and \(E_y \), where \(E_x \) is directed against the airflow \(u \).

![Figure 1. Schematic representation of the DMA.](image)

Thus the horizontal velocity of charged particles is

\[u = Z_1 E_x, \]

where \(Z_1 \) is the mobility of entering aerosol particles.

Equation (12) for the characteristic (limiting) mobility is replaced by a modified equation

\[Z_0 = \frac{u}{E_y} \frac{d}{L + kd}. \]

We will consider here the case \(E_x \propto E_y \). Let us express \(E_x = kE_y \), where \(k \) is the coefficient of proportionality.

The following derivation of equations is quite similar to that in (Salm, 2000), with understandable replacements. In Equation (14) the flow velocity \(u \) is retained, since the horizontal electric field \(E_x \) does not influence the inlet. The entering aerosol is characterized by the differential distribution of polar charge density of particles by mobility or the mobility spectrum \(\rho(Z_1) \). In Equation (15) the electric field strength \(E \) is replaced by \(E_y \) etc. The derivation results in the normalized apparent spectrum \(w^*(Z,Z_1) \). Equation (27) in (Salm, 2000) is replaced by the following equation:

\[w^*(Z,Z_1) = \frac{\rho_0 Z_1}{2\pi Z^2} \times \exp \left\{ \frac{\rho_0}{2} \left(\frac{L}{d} + \frac{E_y}{L + kd} Z_1 \right) \right\} \times K_0 \left(\frac{\rho_0}{2} \left(\frac{1}{L + kd} Z_2 \right) \right) \times \left(1 \pm \frac{l^2}{a^2} \right), \]

where \(Z \) is the variable mobility, \(\rho_0 \) is the Peclet number, \(K_0(\zeta) \) is the Macdonald’s function.

Rough estimations of the influence of diffusion on the resolution of mobility spectrometers are possible also by means of simpler methods. However, a precise knowledge of the apparent spectrum opens a way to the improvement of resolution by calculations.

If we know the normalized apparent spectrum \(w^*(Z,Z_1) \) for one mobility \(Z_1 \), then the apparent spectrum \(\rho^a(Z) \) for any general case is expressed as

\[\rho^a(Z) = \int w^*(Z,Z_1) \rho(Z_1) dz_1. \]

(*)

In many cases the apparent spectrum \(w^*(Z,Z_1) \) depends on the ratio \(Z/Z_1 \). Then, using a simple exponential transformation, it is possible to express Equation (*) in the shape of convolution, and to solve the convolution equation by means of the Fourier transform.

This work was supported by the Estonian Science Foundation under grants 6223 and 6988.

