Improvement in ambient air quality in East Germany after the German reunification: Analysis of the trends in exposure and their implications

J. Cyrys¹,², M. Pitz², S. Breitner¹, M. Stölzel¹, W. Kreyling¹, J. Heinrich¹, H.-Erich Wichmann¹,³ and A. Peters¹

¹ Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
² University of Augsburg, Environment Science Center, 86159 Augsburg, Germany
³ Ludwig-Maximilians-University, IBE, Chair of Epidemiology, 81377 Munich, Germany

Keywords: air quality, ambient aerosols, source structure, German reunification, long-term trends.

In recent years, ambient air pollution concentrations have been reduced Europe-wide by emission controls and fuel replacement. These measures are of particular interest for the regulating agencies as well as for the regulated entities.

One of the main objectives of our study carried out in Erfurt, Germany, was to assess the changes in ambient air quality and in the emission source structure after the German reunification, when air quality dramatically improved. For the same period we also report on selected results showing associations between decreasing air pollutant levels and short-term mortality.

We obtained data on gaseous pollutants SO₂, O₃, NO₂, and CO, mass concentrations of particulate matter (PM) < 10 µm (PM₁₀), and meteorology for the whole study period between October 1991 and March 2002. Ultrafine particle number (UFP) and PM₂.₅ mass concentrations were measured during the winter 1991/92 and from September 1995 to March 2002 at a research monitoring site.

As shown in Figure 1 the most rapid decrease of winter mean concentrations over the study period was observed for SO₂. The decrease of the particle mass concentration in the winter seasons was 80% and 70% for PM₂.₅ and PM₁₀, respectively. In contrast, the trend for UFP was less clear. Except of a strong increase in winter 95/96, rather stable UFP levels were observed in the following period.

An analysis of correlations and ratios between the air pollutants showed that the pollution mixture has changed during the 90ties towards a mixture much like “Western European” urban air pollution, which is characterized by elevated concentrations of NOₓ, O₃ and UFP and lower concentrations of SO₂ and TSP. Two source categories that have undergone significant changes in East Germany after the reunification include energy production (by power plants and by local heating) and the number and type of vehicles. For example, prior to the reunification many homes used individual coal furnaces for heating. This practice has nearly been eliminated after the reunification, with coal-burning ovens being replaced mostly by natural gas heating systems (Figure 2).

This work was supported by the Focus Network Nanoparticles and Health – Helmholtz Zentrum München and the Health Effects Institute, Boston, MA, (Assistance Agreement R82811201).